

1.Ref 2.Cathode 3.Anode

MT432

DESCRIPTION

The MT432 is a low voltage three terminal adjustable shunt regulator with a guaranteed thermal stability over applicable temperature ranges. The output voltage can be set to any value between V_{REF} (approximately 1.24 V) to 8V with two external resistors.

MATRIX MICROTECH CORP.

This device has a typical output impedance of 0.30 Ω . Active output circuitry provides a very sharp turn on characteristic, making this device excellent replacement for Zener diodes in many applications.

The MT432 is characterized for operation from -40 °C to 105 °C, and two package options (SOT-23-3L and TO-92) allow the designer the opportunity to select the proper package for their applications.

FEATURES

- \triangleright Low voltage operation (1.24V)
- Adjustable output voltage $V_0 = V_{REF}$ to 8V
- Wide operating current range 60µA to 100mA
- \triangleright Low dynamic output impedance 0.30 Ω (Typ.)
- Trimmed bandgap design up to \pm 0.5 %. \triangleright
- ESD rating is 2.5KV(Per MIL-STD-883D) \triangleright

- **APPLICATIONS**
- ≻ Linear Regulators
- Adjustable Supplies \geq
- \triangleright Switching Power Supplies
- \triangleright **Battery Operated Computers**
- ≻ Instrumentation
- ≻ **Computer Disk Drives**

PIN CONFIGURATIONS

TO-92 (Top View)

MT432Z/BZ 1.Cathode 2.Anode 3.Ref

• ORDERING INFORMATION

Device	Package		Tolerance	T _{oper} (°C)
MT432Z	7	TO-92	0.5 %	-40 to 105
MT432BZ	Ζ.		1 %	
MT432S	S	SOT-23-3	0.5 %	
MT432BS			1 %	

♦ ABSOLUTE MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Maximum	Unit
Cathode to Anode Voltage (Note 2)	V _{KA}	8	V
Continuous Cathode Current	I _{KA}	150	mA
Reference Input Current	I _{REF}	3	mA
Thermal resistance junction to ambient			
TO-92	θ_{JA}	220	°C/W
SOT-23-3L		230	
Operating junction temperature	TJ	150	°C
Storage temperature range	T _{STG}	-45 to 150	O
Lead temperature (soldering) 10sec	T _{LEAD}	260	°C

Note 1:

Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of the specified terminal.

Note 2:

Voltage values are with respect to the anode terminal unless otherwise noted.

• POWER DISSIPATION TABLE

Package	θ _{JA} (°C /W)	Df(mW/°C) T _A ≥ 25 °C	T _A ≤ 25 °C Power rating(mW)	T _A = 50 °C Power rating(mW)	T _A = 75 [°] C Power rating (mW)
Z	220	6.41	568	455	341
S	230	3.50	543	435	326

Note :

1. Exceeding the maximum allowable power dissipation will result in excessive die temperature, and the regulator will go into Thermal shutdown

2. T_J Junction Temperature Calculation: T_J = T_A+ (P_D × θ_{JA}),

- The θ_{JA} numbers are guidelines for the thermal performance of the device/PC-board system All of the above assume no ambient airflow
- 3. θ_{JA} Thermal Resistance-Junction to Ambient, D_F : Derating factor, P_O : Power consumption.

MT432

Precision Adjustable Shunt Voltage Reference

♦ ELECTRICAL CHARACTERISTICS

Parameter		Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Reference Voltage	0.5%			1.234	1.240	1.246	v
	1.0%	V _{REF}	$V_{KA} = V_{REF}$, $I_{KA} = 10 \text{mA}$	1.228	1.240	1.252	
	1.5%		Test Circuit #1	1.221	1.240	1.259	
	2.0%			1.215	1.240	1.265	
Deviation of reference voltage over full temperature range		$V_{i(\text{DEV})}$	$V_{KA} = V_{REF}$, $I_{KA} = 10mA$ $T_A = -40 \ ^{\circ}C$ to 105 $^{\circ}C$ Test Circuit #1	-	68	-	mV
Ratio of change in reference voltage to the change in cathode voltage		∆V _{REF} /∆V _{KA}	I_{KA} = 10mA, $\triangle V_{KA}$ = 8 V to V_{REF} Test Circuit #2	-	-1.0	-2.7	mV/V
Reference current		I _{REF}	I _{KA} = 10mA, R1 = 10KΩ, R2 = ∞ Test Circuit #2	-	0.15	2	μΑ
Deviation of Reference current over full temperature range		I _{I(DEV)}	I _{KA} = 10mA, T _A = 0 °C to 105 °C R1 = 10KΩ, R2 = ∞ Test Circuit #2	-	0.10	-	μΑ
Minimum cathode current for regulation		I _{MIN}	V _{KA} = V _{REF} Test Circuit #1	-	60	100	μΑ
Off-state cathode current		I _{OFF}	V _{KA} = 8V, V _{REF} = 0 Test Circuit #3	-	0.04	0.8	μΑ
Dynamic impedance		Z _{ka}	$I_{KA} = 100 \mu A - 80 m A$ $V_{KA} = V_{REF}, f \le 1 K H_Z$ Test Circuit #1	-	0.3	1.0	Ω

MT432

Precision Adjustable Shunt Voltage Reference

BLOCK DIAGRAM

♦ TYPICAL APPLICATIONS

TEST CIRCUITS

• Typical Performance Characteristics

• Typical Performance Characteristics

Stability Boundary Condition

Test Circuit for $V_{KA} = V_{REF}$

The areas under the curves represent conditions that may cause the device to oscillate. For V_{KA} = 2V and 3V curves, R2 and V_{BA} T were adjusted to establish the initial V_{KA} and IK conditions with C_L = 0. V_{BAT} and C_L then were adjusted to determine the ranges of stability. As the graph suggested, MT432 is unconditional stable with I_K from 0 to 100mA and with C_L from 0.001uF to 1uF.

PHYSICAL DIMENSIONS

3-Pin Plastic TO-92(Z)

MT432

Precision Adjustable Shunt Voltage Reference

PHYSICAL DIMENSIONS

3-Pin surface Mount SOT-23(S)

